Case study: Riga public transport

1th Polish Hydrogen Energy Conference
Gdynia

25th October 2018
Riga chronology

- Study "Use of hydrogen technologies in Riga public transport, environmental and economic aspects”;

- HIT 2 – Corridors Hydrogen Infrastructure for Transport. As part of this project HRS where deployed in Gothenburg, Stockholm and Voikoski (Finland). HRS implementation plans for Finland, Riga region, Poland and Belgium were developed. Study: Hydrogen as transport fuel refueling infrastructure implementation in Riga and Riga region. Co-financed by TEN-T;

- “NewBusFuel” - Engineering studies for hydrogen refueling infrastructure development for large scale bus depots. Funded by FCH JU;
“H2 Nodes”

GA CEF TRANSPORT No: INEA/CEF/TRAN/M2014/1025986
Action No.: 2014-EU-TM-0643-S
H2Nodes – evolution of a European hydrogen refueling station network by mobilizing the local demand and value chains.

- H2Nodes Action looks into planning and realizing a chain of HRS and boosting implementation of FCEV along the North Sea - Baltic TEN-T core network corridor;

- The focus is on market sided innovation by real-life deployment with local studies and processes to boost market introduction;

- RM LLC “Rīgas Satiksme” pilot of the innovative concept HyTrolleys where two alternative fuels electricity and hydrogen are combined to allow the benefit from the advantages of both technologies and provide greater flexibility in the urban transport system - less noise, zero emissions and better energy efficiency
Riga city public transport routes
Riga city, bus and trolleybus routes
bus route nr.40: Jugla3 - Ziepniekkalns
By evaluating existing routes of diesel buses, for replacement possibilities by trolleybus with spare traction power provided by diesel generator or hydrogen fuel cell, it was concluded that it is feasible. In the calculation were compared spare traction power providing diesel generators and hydrogen fuel cell FC velocity HD7 operating expenses.

Potential savings:
- Bus / Trolleybuss with diesel genset - 25 %
- Bus / Trolleybuss with FC - 27 - 35%*

* Significant impact on results have hydrogen source and production solution.
Comparison of different powertrains

<table>
<thead>
<tr>
<th>Similar performance</th>
<th>Differentiated performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger capacity</td>
<td>Acceleration, time to accelerate to 30 km/h, sec</td>
</tr>
<tr>
<td>Curb weight (12-m bus)</td>
<td>12.5 10.0 7.5 5.0</td>
</tr>
<tr>
<td>Lowest: Diesel (11.6 t)</td>
<td>Range, km</td>
</tr>
<tr>
<td>Highest: Overnight e-bus (13.5 t)</td>
<td>0 50 100 150 200 250 >300</td>
</tr>
<tr>
<td>Range in pure-electric mode, km (logarithmic scale)</td>
<td>0 3 10 30 100 >300</td>
</tr>
<tr>
<td></td>
<td>10 hr 5 hr 2 hr 1 hr 30 min 10 min 5 min 1 min</td>
</tr>
<tr>
<td>Refuelling time, logarithmic scale</td>
<td>V CHO DPS T</td>
</tr>
</tbody>
</table>

1 Typical values shown here – pure electric range of hybrid powertrains varies depending on concept of auxiliary units and battery capacity
2 Based on a 60 kWh battery and a consumption (incl. losses from charging) of 2 kWh/km

- Only hydrogen fuel cell and trolley can drive with zero emissions at almost no range limitation
- E-buses limited in operational range – long charging times for overnight
- Diesel hybrids, serial in particular, capable of zero emission driving on certain stretches of the route with same operational conditions as conventional powertrain; serial

Source: FCH JU study “Urban buses, alternative powertrains for Europe”
Technical solution

- A/C unit
- Traction container
- Braking resistor
- Power steering pump
- Traction motor 240kW
- Plug-in socket
- Air compressor
Bus and trolleybus depots

Kleistu street 28

Ganibu dambis 32

Vestienas street 35

Jelgavas street 37
Bus and trolleybus depots

Vestienas street 35

- Operating 142 diesel buses, total area of depo 80 170 m², diesel storage for refueling 250 000 L

Kleistu street 28

- Operating 256 diesel buses, total area of depo 47 547 m² and additional is ~ 32 000 m², diesel storage for refueling 250 000 L

Jelgavas street 37

- Operating 123 trolleybuses (67 equipped with diesel APU). Total area of depo 56 693 m², diesel storage for refueling 9 000 L

Ganibu dambis 32

- Operating 126 trolleybuses. Total area of depo 56 693 m², diesel storage for refueling 9 800 L
Hydrogen Refueling Station

Main characteristics:
- H2 production capacity 300 kg/day
- 350 bar and 700 bar dispensers
- H2 storage 600 kg

Disposition of the HRS next to Riga Municipal LLC “Rigas satiksme” 2nd trolleybus park in Jelgavas street 37
Findings

- **Traction power** for public transport most efficiently can be provided with **electric motor**;

- **Security of energy supply** and **energy efficiency** of public transport and urban infrastructure can be provided through introduction of **alternative fuels** and **energy resources diversity** by universal energy carriers - **electricity and hydrogen**;

- The greatest benefits for **air quality** and **environment** by implementing **alternative fuels** and **zero emission vehicles** can be achieved in **urban areas**;
Riga summary

- **“H2 Nodes”** - HRS and 10 FC range extended trolleybuses;

- **“JIVE”** – 10 FCE buses;

- **EIB loan – 75 M EUR** for construction of hydrogen refueling, production and storage facility, purchase of 10 hydrogen fuel cell (HFC) buses and 10 Hytrolleys with HFC range extenders. Purchase of 20 new low-floor tram units to operate in the city of Riga, and modernisation of tramway infrastructure and depot.
EU regional clusters for Fuel Cell Electric Buses Joint Procurement activities

The consultancy team is being led by Element Energy (also the UK cluster coordinator), and includes partners to coordinate activities across Europe:

- **France** – Hydrogène de France
- **Germany** – ee energy engineers & hySOLUTIONS
- **Netherlands** – Rebel Group & Twynstra Gudde
- **Northern Europe** – Latvian Academy of Sciences
- **UK** – Element Energy
JIVE: Joint Initiative for hydrogen Vehicles across Europe

Objectives
- Deploy 142 FC buses across nine cities
- Achieve 30% cost reduction versus state of the art
- Operate 50% of the vehicles for at least 36 months
- Deploy the largest capacity HRS in Europe
- Achieve near 100% reliability of HRS
- Demonstrate technological readiness of FC buses and HRS
- Encourage further uptake

Fuel cell buses in cities participating in JIVE

Germany – 51 FC buses
UK – 56 FC buses
Italy – 15 FC buses
Latvia – 10 FC buses
Denmark – 10 FC buses

JIVE will be a six year project, that started on the 25th of January 2017
JIVE 2: Joint Initiative for hydrogen Vehicles across Europe Phase 2

Objectives
Deploy 152 FC buses across 14 cities
Achieve a maximum price of €625k for a standard fuel cell bus
Operate buses for at least three years / 150,000 km
Validate large scale fleets in operation
Enable new entrants to trial the technology
Demonstrate routes to low cost renewable H₂
Stimulate further large scale uptake

Total = 291 new FC buses for Europe

- **Benelux Cluster** (50 FC buses)
- **France Cluster** (15 FC buses)
- **Germany / Italy Cluster** (88 FC buses)
- **Northern / Eastern Europe Cluster** (50 FC buses)
- **UK Cluster** (88 FC buses)
Modernization of the existing shunting locomotives by replacing diesel genset with FC;
In operational use the FC-electric shunting locomotive reduces the local emissions (CO, NOx, NMVOC and PM) to zero and significantly reduces noise and vibration levels;
Economic benefits compared to existing alternatives in the market;
Possibility to use FC-electric locomotives in closed areas, warehouses and in places where it is technically and geographically challenging or impossible to implement railway electrification (Last mile) e.g. Railway depo, cargo ports, shunting yard;
ČME3M-H2
1. Fuel cell power unit and BOP.
2. Hydrogen storage system (tanks for compressed gaseous hydrogen).
3. Battery module and Electricity transformer units (traction electromotor power supply).
4. TCMS, power management system, High voltage switch gear.
5. Auxiliary units and systems (air compressor, traction electric motor fan, brake resistor and other auxiliary unit power supply).
Thank You for attention!

Aivars Starikovs
Latvian Hydrogen association
Chairman of the board
Email: aivars@h2lv.eu
Hydrogen as an Enabler for the Implementation of the European low carbon economy.
A portfolio of clean, efficient and competitive solutions based on fuel cells and hydrogen technologies in energy and transport.
Decarbonising Energy Systems

Easy ← complexity to decarbonise → Hard

- **Transport**
 - Multiple technologies to address the challenge

- **Power**

- **Industry**

- **Heat**

Sources: based on Equinor, 2018
Hydrogen for the Transport sector: Buses

EU-funded projects

CHIC
- **(36 buses, plus 20 in Canada)**
 - Aargau, CH;
 - Bolzano, IT; London, UK; Milan, IT; Oslo, NO;
 - Cologne, DE*; Hamburg, DE*

High V.LO-City
- **(14 buses)**
 - Antwerp, BE; Aberdeen, UK; Groningen, NL; San Remo, IT

HyTransit
- **(6 buses)**
 - Aberdeen, UK

3Emotion
- **(21 buses)**
 - London, UK
 - Aalborg, DK; Pau, FR;
 - Rome, IT; South Rotterdam, NL; South Holland;
 - Versailles, FR

National/regional-funded projects
- Karlsruhe, DE; Stuttgart, DE;
- Frankfurt, DE;
- Arnhem, NL; North Brabant, NL; Artois Gohelle, FR

Legend
- Countries with (upcoming) FC buses
- In operation
- Planned or operation ended
- National funding

JIVE
- **(139 buses)**
 - Aberdeen, UK – 10 FC buses
 - Birmingham – 20 FC buses
 - Bolzano, IT – 12 FC buses
 - Cologne region, DE – 30 FC buses
 - Herning, DK – 10 buses
 - London, UK – 26 FC buses
 - Rhein-Main region, DE – 11 FC buses
 - Riga, LV – 10 FC buses
 - Wuppertal, DE – 10 buses

JIVE 2
- **(152 buses)**
 - UK – 20 buses
 - Dundee, UK – 12 buses
 - Groningen, NL – 20 buses
 - North Brabant, NL – 10 buses
 - South Holland, NL – 20 buses
 - Auxerre, FR – 5 buses
 - Pau, FR – 5 buses
 - Toulouse, FR – 5 buses
 - Cologne region, DE – 1
 - Germany – 15 buses
 - Iceland – 10 buses
 - Sweden – 5 buses
 - Akershus, NO – 10 buses

Source: JIVE/ JIVE2

Last update: April 2018
Hydrogen for the Transport sector: HDV

FCH-JU H2ME project Batt+RE

<table>
<thead>
<tr>
<th>Location</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Symbio Renault</td>
</tr>
<tr>
<td>Autonomy</td>
<td>Tbc</td>
</tr>
<tr>
<td>Tank cap.</td>
<td>Tbc</td>
</tr>
<tr>
<td>Capacity</td>
<td>Tbc</td>
</tr>
<tr>
<td>Filling time</td>
<td>Tbc</td>
</tr>
</tbody>
</table>

ESORO COOP

<table>
<thead>
<tr>
<th>Location</th>
<th>Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>ESORO</td>
</tr>
<tr>
<td>Autonomy</td>
<td>400 KM</td>
</tr>
<tr>
<td>Tank capacity</td>
<td>31 KG</td>
</tr>
<tr>
<td>Capacity</td>
<td>34'000 KG</td>
</tr>
<tr>
<td>Filling time</td>
<td>10 min</td>
</tr>
</tbody>
</table>

ASKO-SCANIA

<table>
<thead>
<tr>
<th>Location</th>
<th>Norway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>SCANIA</td>
</tr>
<tr>
<td>Deployment</td>
<td>2018</td>
</tr>
<tr>
<td>Autonomy</td>
<td>500 km</td>
</tr>
<tr>
<td>Transport Capacity</td>
<td>27'000 KG</td>
</tr>
</tbody>
</table>

VDL - COLRUYT

<table>
<thead>
<tr>
<th>Location</th>
<th>Belgium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>VDL Group</td>
</tr>
<tr>
<td>Deployment</td>
<td>2018</td>
</tr>
<tr>
<td>Transport Capacity</td>
<td>37'000 KG</td>
</tr>
</tbody>
</table>

FCH-JU started with FC in trucks by researching APU's (3 projects) then Range Extenders in H2ME, by end 2017 about 15 garbage trucks expect to be funded.

- Nicola Trucks
- Toyota Truck @LA port
- Kenworth FC drayage truck
- Partners planning 2,000 commercial vehicles on the road in next 3 years.
- Toyota and 7-eleven study to use FC
Technology and policy experts will lead a two-day conference to drive forward the realisation of zero emission public transport for Europe.

Agenda overview

- Technological readiness
- Zero emission bus deployment
- Lessons learned
- New business and financing models
- Scaling up – going from small bus fleets to complete zero

DETAILS & REGISTRATION: zebconference.com/eu

27th – 28th
NOVEMBER 2018
FLORA
COLOGNE, GERMANY

Organised under the patronage of

In partnership with

EnergieAgentur.NRW & Elektromobilität NRW

@EUZEBCconference #ZEB2018
Thank you! Questions?

Contacts
Hydrogen Europe
Avenue de la Toison d’Or 56-60
1060 Brussels
Belgium

Aivars Starikovs
Member of the Board
E-mail: aivars@h2lv.eu
Tel.: +371 29 242995
www.hydrogeneurope.eu